
Z80-MBC2

USER MANUAL

Homemade 8MHz Z80 SBC, 128kB banked RAM, RTC, SD (HD emulation), Basic and
Forth interpreter, CP/M 2.2 and 3, UCSD Pascal, Fuzix and more…

D081023-R131023

https://hackaday.io/project/159973

Document Reference: D081023-R131023

HW Reference: A040618

IOS Reference: S220718-R290823

CHANGELOG:

D081023 First revision.
D081023-R131023 Updated J4 connector usage;

Added GPIO (J7) connector pinout;
Added SERIAL (J2) connector pinout;
Added Tasm assembler chapter.

Made with:

Z80-MBC2 User Manual 2

https://www.libreoffice.org/

Table of Contents
* * INTRODUCTION * *..5
* * NOTES ON THIS MANUAL * *..6
* * HARDWARE OVERVIEW * *...8

NOTES ABOUT THE COMPONENTS...8
THE GPE OPTION (GPIO CONNECTOR)..9
THE SERIAL PORT...9
THE OPTIONAL RTC MODULE..12
THE OPTIONAL SD MODULE...15

* * uTERM, VT100-LIKE TERMINAL FOR THE Z80-MBC2 * *..16
* * uCOM, RS232 FOR THE Z80-MBC2 * *...19
* * SPP (STANDARD PARALLEL PORT) ADAPTER BOARD * *......................................22

SPP: HOW TO BUILD IT..23
SPP: HOW TO USE THE SPP CP/M UTILITY..23
SPP: WHERE TO GET A PCB...24
SPP: HOW TO GET A KIT OR AN ASSEMBLED UNIT..24

* * SOFTWARE OVERVIEW * *...25
HOW FLASH THE BOOTLOADER FROM ARDUINO IDE (LINUX)..............................27
HOW ENTER IN THE "SELECT BOOT MODE OR SYSTEM PARAMETERS" MENU.32
THE BAUD RECOVERY VIRTUAL BUTTON..33
THE SD IMAGE...35
HOW ADD CP/M FILES INSIDE A VIRTUAL DISK USING CPMTOOLSGUI...............35
HOW TO USE ILOAD..38
HOW ENABLE THE EXTENDED RX BUFFER FOR XMODEM (CP/M).......................40
CP/M 2.2..42
CP/M 2.2 WARM BOOT MESSAGE..43
CP/M 2.2 AUTOEXEC..43
QP/M 2.71..44
QP/M 2.71 AUTOEXEC...45
CP/M 3...45
CP/M 3 AUTOEXEC...46
UCSD PASCAL..46
COLLAPSE OS..50
FUZIX OS...51
HOW BUILD FUZIX OS FROM SCRATCH...54

* * USING THE SDCC CROSS COMPILER * *..56
SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (WINDOWS).............................57
SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (LINUX)....................................58
SDCC: USING AUTOBOOT...58
SDCC: EXAMPLES..59

* * USING THE TASM CROSS ASSEMBLER * *...60
TASM: USING AUTOBOOT...60

* * OVERCLOCKING THE Z80-MBC2 * *..61
* * USING AN ATMEGA1284/ATMEGA1284P * *..64
* * PROJECT STATUS * *..65
* * HOW TO GET A PCB * *...65
* * HOW TO GET A KIT OR AN ASSEMBLED UNIT * *..65
* * Z80-MBC2 USER GROUP * *...65

Z80-MBC2 User Manual 3

* * LICENSING AND CREDITS * *...66

Z80-MBC2 User Manual 4

* * INTRODUCTION * *

The Z80-MBC2 is an easy to build Z80 SBC (Single Board Computer). It is the "evolution"
of the Z80-MBC (https://hackaday.io/project/19000), with a SD as "disk emulator" and
with a 128KB banked RAM for CP/M 3 (but it can run CP/M 2.2, QP/M 2.71, UCSD Pascal,
Collapse OS and Fuzix too).

It has an optional on board 16x GPIO expander, and uses common cheap add-on modules
for the SD and the RTC options. It has an "Arduino heart" using an Atmega32A as
EEPROM and "universal" I/O emulator (so a "legacy" EPROM programmer is not needed).

It is a complete development "ecosystem", and using the iLoad boot mode it is possible
cross-compile, load and execute on the target an Assembler or C program (using the
SDCC cross compiler) with a single command (like in the Arduino IDE).

All the related documentation and files can be found in the FILES section of the project
site

Z80-MBC2 User Manual 5

https://hackaday.io/project/159973/files
https://hackaday.io/project/159973/files
https://hackaday.io/project/19000
https://cdn.hackaday.io/images/4364631532527997411.jpg

* * NOTES ON THIS MANUAL * *

This manual has been extracted from the Z80-MBC2 project page on Hackaday.io, so it
should be considered as a “frozen image”.

The table of contents has hyperlinks so it’s possible to jump easily to the desired
chapter/paragraph, and all the original hyperlinks have been maintained inside the text.

All the images are hyperlinked to the original one on the web pages.

Of course to check latest changes it is always better to take a look on the real site.

Z80-MBC2 User Manual 6

https://hackaday.io/project/159973
https://cdn.hackaday.io/images/9264821532552027880.jpg

Z80-MBC2 User Manual 7

https://cdn.hackaday.io/images/9365241560075770564.jpg
https://cdn.hackaday.io/images/8245971560075910398.JPG

* * HARDWARE OVERVIEW * *

The needed ICs for the "base system" are:

• Z80 CPU CMOS (Z84C00) 8Mhz or greater
• Atmega32A
• TC551001-70 (128kB RAM)
• 74HC00

If you want the 16x GPIO expansion (GPE option) add a MCP23017 too.

The schematic and the BOM are attached in the FILES section of the project site . The
MCU Atmega32A is used as universal I/O subsystem, as Eeprom, and as reset and
4/8MHz clock generator for the Z80 CPU.

Inside the Atmega32A it is flashed an Arduino bootloader taken from here, and it is
possible to use the Board Manager of the Arduino IDE to "import" it.

Flash the Arduino bootloader at first (with the method you prefer), next you can upload the
IOS "sketch" (the I/O Subsystem that interacts with the Z80 bus and "virtualizes" the
EEPROM and all the peripherals seen by the Z80 CPU) using Arduino IDE.

You can use the on board ICSP port J3 (also called ISP port) to write the bootloader, but
remember to disconnect any other connector when using it. Also both SD and RTC
modules (if present) must be removed from the board when the ICSP port is in use.

As clock source for the Z80 CPU it is used the 16MHz Atmega32A oscillator, so the
"external 16MHZ osc." bootloader variant must be chosen when flashing the bootloader
from the Arduino IDE!.

The 74HC00 is used as RS flipflop to stop the Z80 CPU during I/O operation, giving the
needed time to the Atmega32A to interact with the Z80 bus, and as part of the MMU.

Note that only the CMOS version of the Z80 CPU can be used here. This because only
CMOS version, under given condition that are respected in this schematic, has logical
levels compatibles with Atmega32A and 74HC00.

NOTES ABOUT THE COMPONENTS

You should use a Z80 CMOS speed grade of at least 8MHz for full speed, but setting the
clock speed at 4MHz you can use a 4MHz Z80 CMOS version too (or you can try to
overclock it at 8MHz...). The 74HC00 can be substituted with a 74HCT00 if you already
have one. The RAM chip TC551001-70 can be substituted with any suitable 128kB
SRAM).

Please note that the USER led * must * be blue or white (or pink... I've some pink leds
that seems to have a Vf like blue one. May be I'll do a board with them...) just to be sure

Z80-MBC2 User Manual 8

https://github.com/MCUdude/MightyCore#how-to-install
https://hackaday.io/project/159973/files

that V(forward) is >= 2.7V (otherwise the USER key may not work as expected).

The J4 connector (AUX_P) is used as auxiliary power connector when an add-on board
(uCom or uTerm) is connected.

The three solder jumpers (SJ1-3) on the bottom side are not currently supported and
must be left opened (as stated in the schematic).

THE GPE OPTION (GPIO CONNECTOR)

It is possible to choose to populate on the PCB a GPIO port expander (U5) to add 16
bidirectional GPIO pins. The GPE option (see the schematic) can be used with the SPP
Adapter board (see the paragraph: SPP (STANDARD PARALLEL PORT) ADAPTER
BOARD).

The pinout of the GPIO (J7) connector is:

THE SERIAL PORT

The SERIAL port (J2, see schematic) can be connected with a TTL-RS232 adapter, or
with a serial-USB adapter.

I've used a serial-USB adapter that acts also as power source for the Z80-MBC, and has

Z80-MBC2 User Manual 9

https://cdn.hackaday.io/images/8565051696844944036.jpg

the DTR signal for the "autoreset" driven from the Arduino IDE. For a terminal that has a
serial TTL port no adapter is needed.

Of course to upload a "sketch" from Arduino IDE you need to use a serial-USB adapter
connected to the SERIAL port.

Note that the RTS and CTS pins of the SERIAL port are not currently supported and must
be left not connected (as the NC pin!).

The 3V3 pin of the serial-USB adapter must be left disconnected (if present).

You should use those Serial-USB adapters that have the DTR pin on the connector. It is
suggested to have also the CTS/RTS signals available for future upgrades.

Please note that all the pin names of J2 on the PCB are referred to the serial-USB
adapter, so all the signals as TX and RX are relative to the serial-USB adapter side
(in other words TX and RX are already "inverted". See the schematic).

Here a suggested serial-USB adapter based on a CP2102 (very common on ebay):

Z80-MBC2 User Manual 10

https://cdn.hackaday.io/images/9872321533067772778.jpg

In the following table there is the SERIAL (J2) connector pinout and how connect it to the
serial-USB adapter. Please note that in this configuration the Z80-MBC2 board must be
exclusively powered from the serial-USB adapter itself:

Z80-MBC2 User Manual 11

https://cdn.hackaday.io/images/5299171533067783979.jpg
https://cdn.hackaday.io/images/8061631696850988977.jpg

THE OPTIONAL RTC MODULE

The RTC is a common module based on a DS3231 RTC like this one:

This cheap modules have a trickle charging circuit that may cause the "explosion" of the
battery if you use a standard CR2032 cell. More, it can damage also a rechargeable
LIR2032 cell. For more information and how to fix it see here.

The RTC module has it's own pullup resistors on SDA and SCL. Because the value is 4k7
(the same value used inside the Z80-MBC2 board), the resulting value will be:

4k7 // 4k7 = 2k3

Because this value is fine there is no need to take away the pullup on the RTC module.

Pay attention on how and where you plug the module in (the only right connector for it is
J5 marked as RTC_MOD). If you plug it in the wrong connector or in the wrong way it is
possible cause permanent damages to both the module and the Z80-MBC2 board! So plug
it as shown in the photos (here a board with the GPE option installed):

Z80-MBC2 User Manual 12

https://hackaday.io/project/19000-a-4-4ics-z80-homemade-computer-on-breadboard/log/60037-a-new-os-qpm-271-and-a-rtc-for-timestamping
https://cdn.hackaday.io/images/3675771495553896781.jpg

Z80-MBC2 User Manual 13

https://cdn.hackaday.io/images/9654931532553145569.jpg

Z80-MBC2 User Manual 14

https://cdn.hackaday.io/images/5075271532553121295.jpg

THE OPTIONAL SD MODULE

The optional SD module is used as HD emulation. The module is a common 6 pins
microSD module that can be easily found on ebay:

Pay attention on how and where you plug the module in (the only right connector for it is
J6 marked as SD-MOD). If you plug it in the wrong connector or in the wrong way it is
possible cause permanent damages to both the module and the Z80-MBC2 board!

Z80-MBC2 User Manual 15

https://cdn.hackaday.io/images/7615991587635290177.jpg

* * uTERM, VT100-LIKE TERMINAL FOR THE

Z80-MBC2 * *

uTerm (micro-Term) is a VT100-like terminal for the Z80-MBC2. It has a VGA out and
PS/2 keyboard connector, a power supply for the Z80-MBC2 and a "transparent" serial-
USB port.

uTerm can be mounted horizontally or vertically to the Z80-MBC2.

With the uTerm the Z80-MBC2 becomes an "autonomous" computer:

Z80-MBC2 User Manual 16

https://cdn.hackaday.io/images/8580841560360198936.JPG

Z80-MBC2 User Manual 17

https://cdn.hackaday.io/images/4064671557820927859.jpg
https://cdn.hackaday.io/images/4837511557820948636.JPG

All the details on the uTerm are here.

Z80-MBC2 User Manual 18

https://hackaday.io/project/165325-uterm
https://cdn.hackaday.io/images/8729661557820846260.jpg

* * uCOM, RS232 FOR THE Z80-MBC2 * *

uCom (micro-Com) is a RS232 adapter for the Z80-MBC2. It has a power supply for the
Z80-MBC2 and a "transparent" serial-USB port.

uCom can be mounted horizontally or vertically to the Z80-MBC2:

Z80-MBC2 User Manual 19

https://cdn.hackaday.io/images/3373851559318327385.JPG

With the uCom the Z80-MBC2 can be used with a "vintage" RS232 terminal:

Z80-MBC2 User Manual 20

https://cdn.hackaday.io/images/4572961559318297498.JPG
https://cdn.hackaday.io/images/4302961559318363008.JPG

All the details on the uCom are here.

Z80-MBC2 User Manual 21

https://hackaday.io/project/165709
https://cdn.hackaday.io/images/3532011559318114059.jpg

* * SPP (STANDARD PARALLEL PORT) ADAPTER

BOARD * *

The Standard Parallel Port (SPP) Adapter board allows to use the GPIO port of the Z80-
MBC2 as a standard printer parallel port.

In this way you can use a legacy parallel (Centronics) printer.

To connect the SPP Adapter board to the GPIO connector of the Z80-MBC2 board you
need a 10cm long 20 wires flat cable terminated with an IDC connector at both sides (pay
attention to connect the cable in the right way on both sides, so the pin 1 on the Z80-
MBC2 GPIO connector corresponds to the pin 1 on the SPP Adapter board GPIO
connector).

Please note that you have to power off the Z80-MBC2 board before connecting or
disconnecting the SPP Adapter board to it.

NOTE: before using the SPP Adapter board (A240721-R270921, the same board used
with the 68K-MBC) you have to update both the IOS firmware and the SD image to the
latest available version (see the FILES section of the project site).

In the following image the SPP Adapter board with the flat cable (connected to the GPIO
connector of the Z80-MBC2) and with the printer cable:

The cable to use for the printer is the common parallel printer cable, with a DB-25
connector at one side and a Centronics connector at the other:

Z80-MBC2 User Manual 22

https://hackaday.io/project/159973/files
https://hackaday.io/project/177988
https://cdn.hackaday.io/images/169841695567709050.jpg

SPP: HOW TO BUILD IT

In the FILES section of the project site you can find a zip file with all the documentation
needed to build the SPP Adapter board, including the Gerber files for the PCB production.

SPP: HOW TO USE THE SPP CP/M UTILITY

To enable the SPP Adapter board under CP/M 2.2 and CP/M3 (banked) I've added on the
drive A: the custom utility SPP.BAS.

You have to execute the SPP utility with the command MBASIC SPP to enable the SPP
Adapter board and "link" to it the LPT: CP/M device inside CP/M. After the execution of the
SPP utility the GPIO port will be linked and reserved (the "normal" GPIO
opcodes/functions inside IOS will be disabled) to the SPP parallel port emulation until a

Z80-MBC2 User Manual 23

https://hackaday.io/project/159973/files
https://cdn.hackaday.io/images/1402791695567751859.jpg

system reset or reboot:

NOTE: the SPP Adapter board is currently supported under CP/M 2.2 and CP/M 3
(banked) only.

SPP: WHERE TO GET A PCB

I've prepared an "easy" link to get a small lot (5 pcs minimum) of PCB of the SPP Adapter.
The link is this one.

SPP: HOW TO GET A KIT OR AN ASSEMBLED UNIT

If you are looking for a SPP Adapter board kit with all the needed parts or an assembled
unit ready to use now there is a professional seller that can sell both and ship worldwide.

The link to the seller is this one.

Z80-MBC2 User Manual 24

https://shop.mcjohn.it/en/diy-kit/84-228-spp-adapter-black-edition.html
https://www.pcbway.com/project/shareproject/SPP__Standard_Parallel_Port__Adapter_for_the_68k_MBC.html
https://cdn.hackaday.io/images/3599391695568476592.png

* * SOFTWARE OVERVIEW * *

The MCU Atmega32A is used as universal I/O subsystem, as Eeprom, and as reset and
clock generator for the Z80 CPU.

The software running into the Atmega32A is the IOS (Input Output Subsystem) written
using the Arduino IDE environment.

The IOS allows to interface the Atmega32A directly with the CPU system bus, emulating
the needed I/O chips during the I/O read, I/O write and IRQ acknowledge CPU bus
cycles (see the Z80 datasheet).

Furthermore, the IOS loads the RAM during the boot phase, "feeding" the CPU with the
necessary instructions.

It is possible to choose between two different "flavors" of IOS: IOS and IOS LITE:

IOS LITE is more intended for testing the board for the base functions (it doesn't support
the SD module, so only iLoad, the embedded stand-alone Basic and the embedded stand-
alone Forth can be used). For normal use the standard IOS is the one to flash.

I've "ported" the stand-alone Basic interpreter to the Z80-MBC2 using the sources
provided in the great Grant Searle site , after the needed modification due the different
HW design (in the Grant's site is requested an acknowledgement to his site to use this
source, so I did and I have also emailed to him about this thing).

The resulting ROM image is stored inside the Atmega32A (only for IOS-LITE) and loaded
in the TC551001 RAM by the Atmega32A during the system boot. The original manual of
this Basic interpreter is here.

Z80-MBC2 User Manual 25

http://www.nascomhomepage.com/pdf/Basic.pdf
http://searle.hostei.com/grant/index.html
https://cdn.hackaday.io/images/307741696253730410.jpg

The Forth stand-alone interpreter is a modified version (for the Z80-MBC2) of the one
provided by Bill Westfield for the Z80-MBC.

Z80-MBC2 User Manual 26

https://cdn.hackaday.io/images/1121791532682399964.JPG
https://cdn.hackaday.io/images/6778011532533236205.JPG

HOW FLASH THE BOOTLOADER FROM ARDUINO IDE (LINUX)

A cheap and easy way to burn the Arduino bootloader is to use an USBasp programmer
that is commonly available:

The USBasp is also capable to give the power to the "target" using the VCC pin, but
remember to check that the JP1 jumper is set to provide 5V to the target (as shown in
the photo).

Please note that the pinout of the USBasp is a little different from the "standard"
ICSP (os ISP) pinout:

Z80-MBC2 User Manual 27

https://cdn.hackaday.io/images/5336181532765025788.jpg
https://cdn.hackaday.io/images/6065901532707936157.png

In the previous picture it is possible see that pins 4 (TXD) and 6 (RXD) are not at GND as
expected by the standard ICSP port, and pin 3 is not NC.

See the following picture showing the standard 10 pin ICSP pinout:

So you must consider this when connecting the USBasp to the 6 pins ICSP port (J3) on
the Z80-MBC2 (see the schematic):

To avoid problems I suggest to use as GND pin 10 of the USBasp connector, and
connect the other pins (VCC, MISO, MOSI,SCK, RST) accordingly. An handy way to
connect the USBasp to the 6 pin ICSP port (J3) of the Z80-MBC2 could be to use a
commonly available "10pin to 6pin" adapter like this:

Z80-MBC2 User Manual 28

https://cdn.hackaday.io/images/9500631532707902399.png
https://cdn.hackaday.io/images/2202251532708330298.png

but I suggest not to use it "as is" because its internal connections are done for a
"standard" ICSP port, and we have seen that the USBasp connector differs from the
standard one. The schematic of the adapter shows that isn't compatible "as is" with the
UABasp connector:

Z80-MBC2 User Manual 29

https://cdn.hackaday.io/images/6911951532709372150.jpg

To use it is a good idea isolate the pins 4, 5 and 6 cutting the trace on the PCB of the
adapter that connects those pins together, and then check with a tester. In the
following photo are shown the three cuts (thin red lines inside the green "circle") to do:

Z80-MBC2 User Manual 30

https://cdn.hackaday.io/images/9572631532765443372.jpg
https://cdn.hackaday.io/images/8810441532712517182.JPG

To easily burn the bootloader from Arduino IDE follow these "quick and dirty" steps
(tested on a linux Mint OS with Arduino IDE 1.8.19):

STEP 1: Connect the 10 pins connector of the USBasp programmer to the 6 pins ICSP
port (J3) of the Z80-MBC2 (using wires or a modified adapter as discussed before);

STEP 2: Verify carefully that any other connector of the Z80-MBC2 is not used, and
verify that both the SD and RTC modules (if present) are removed from the board;.

STEP 3: Only at this point connect the USB side of the USBasp programmer to an USB
port of your workstation;

STEP 4: Open a "terminal" window on your workstation and go to the directory where
there are the Arduino IDE executables, and get the root privileges with the command:

sudo su

then run the Arduino IDE with the command:

./arduino

STEP 5: Because Arduino IDE is running as the root user it is necessary re-install the
"core" for the Atmega32. Open the Board Manager as you already did (anyway the guide
is here). Note that you must do this step only the first time you execute the Arduino IDE as
root;

STEP 6: Now from the Tools menu of Arduino IDE select "Atmega32" as "Board", "16
MHz external" as "Clock", and "USBasp" as "Programmer". Then you can burn the right
bootloader (without playing with the FUSE setting) selecting "Burn Bootloader" from the
same "Tools" menu.

All done!

NOTE: If you use a different method requiring manual settings, the right Fuse bits setting
to use is: High Byte 0xD6, Low Byte 0xAF, Lock Byte 0xCF.

Z80-MBC2 User Manual 31

https://github.com/MCUdude/MightyCore#how-to-install

HOW ENTER IN THE "SELECT BOOT MODE OR SYSTEM

PARAMETERS" MENU

To enter in the "Select boot mode or system parameters" menu (or simply "boot menu")
you must press the RESET key (SW2), release it and press immediately the USER key
(SW1) and keep it pressed until the IOS led starts to blink.

An other way is to press both keys, release the RESET key holding the USER key down
until the IOS led starts to blink, or you see the menu on the screen.

In the following screenshots is shown the menu when both the RTC module and the GPE
option are installed for IOS-LITE and IOS:

Z80-MBC2 User Manual 32

https://cdn.hackaday.io/images/6418891532682246597.JPG

iLoad: loads and executes a Z80 Intel-Hex formatted executable sent from the serial port;

Autoboot: loads and executes a Z80 binary file (AUTOBOOT.BIN) on SD;

Load/set OS Disk Set <n>: loads or changes and runs an Operative System installed into
the Disk Set <n> on SD;

Toggle CP/M Autoexec: Turns on or off the execution of the AUTOEXEC batch file at the
cold boot. This is supported for CP/M 2.2, CP/M 2.71 and CP/M 3.

The remaining choices are self-explanatory.

In the following it will be assumed the use of the standard IOS, as the IOS-LITE is
intended only for a limited use.

THE BAUD RECOVERY VIRTUAL BUTTON

Changing the speed of the serial port may happen "to loose" the control of the board (i.e.
you forget the speed or set a wrong speed). In this case you can use a "virtual button" to
reset the serial port to the default speed (115200 bps) without the need of a terminal.

To activate the Baud recovery "virtual button" you have to press both the RESET and
USER key, release the RESET key holding the USER key down until the USER led starts

Z80-MBC2 User Manual 33

https://cdn.hackaday.io/images/8836831695567038748.png

to blink (like for the "Select boot mode or system parameters" menu) and keeping it down
at least for 4 seconds more until both the USER and IOS led start to blink very quickly.
This is the sign that the Baud Recovery "virtual button" has been activated.

At the next reboot the serial port will be set at the default speed (115200 bps):

Note: The Baud Recovery virtual button can be triggered only if the serial port is set to a
non-default (115200) value.

Z80-MBC2 User Manual 34

https://cdn.hackaday.io/images/4979891695566328167.png

THE SD IMAGE

The content of the microSD (I'll call it simply SD from now) is compressed into a zip file in
the Files section.

When you update the IOS firmware you must always update the content of the SD too, as
the SD image is normally suited for a given IOS revision.

You have to unzip it retaining the structure of the sub-directories into a FAT formatted SD
card, so that the various root files (inside the .zip as the various .DSK files and so on...)
are in the root of the SD itself.

IOS supports only FAT16 and FAT32. A 1GB SD is more than enough, anyway because
they tends to be difficult to find now a 4GB SD can be a good choice.

About the SD technology, only "legacy" SD (aka SDSC with a capacity up to 2GB) and
SDHC cards (2GB - 32GB) can be used. Other most recent types are not supported (so,
no SDXC, SDUC,...).

What it really needed to let IOS run are only all the files in the root folder. The other sub-
directories contain source files or examples or other kind of content.

Inside every sub-directory there is a README.TXT file that may contain important
info/updates. Please read them all when you use a SD image first time or when update it!

In the root there is a ChangeLog.txt file with the changes log (related to the SD image
content).

HOW ADD CP/M FILES INSIDE A VIRTUAL DISK USING

CPMTOOLSGUI

The Z80-MBC2 maps any disk like A: B: C: etc. into an image file on SD card with this file
name: DSxNyy.DSK;

where x (from 0 to 9) is OS:

0 = CP/M 2.2
1 = QP/M 2.71
2 = CP/M 3
........
and yy (from 00 to 15) is the disk (00 = A: 01 = B: etc.).

You can download CpmtoolsGUI (English Windows version) from here.

Z80-MBC2 User Manual 35

https://l.facebook.com/l.php?u=http%3A%2F%2Fstar.gmobb.jp%2Fkoji%2Fcgi%2Fwiki.cgi%3Faction%3DATTACH%26page%3DCpmtoolsGUI%26file%3DCPMTG_ENG_20180903.zip%26fbclid%3DIwAR2hybZk9YpyjiRIUgcS1PWuKBZZOGvXue7ud1AWDza7J-f8kq76qGBqd5k&h=AT2BthUQSAUMGQMTchAP-9h7VRXNXAeiGM4i11Hu8tvJpKDYB-YAJglHxesR3JNoSSWsUIQb0XhmhHo4tNRklyW1d3NiKsqQF_WvTqy1eYxxvKDQ_NcxJ3_UP3u3k68uWHI&__tn__=-UK-R&c[0]=AT3GvoTobMpF8-tb8QdVw2ylUUsYfMMfSliUxp4lokOthFAR4s0HftQkRK-20m-LdlVwbIlQs6N4-u1cCVBYl3mo8QL52CrmKgucy4iMJLYFsY6wyhRCp0_9TA75opmj0gdJsisvnHNB-AQ4HjiEBhgCtLsGM53je8EccVctpLUHLtcsTub1oA

Extract the file CpmtoolsGUI.exe in a new folder and add/overwrite the file diskdefs
copying it from the folder cpmtools inside the SD.

-> STEP 1

Select in the upper left window (Image File) of the CpmtoolsGUI tool the virtual disk where
you want to add files.

For CP/M 2.2 and QP/M 2.71:

select "z80mbc2-d0" only for disk 0 or "z80mbc2-d1" for the others (disk 1 - 15) in the
bottom left window (Format) of CpmtoolsGUI.

In the following image is selected (Image File) the disk DS0N02.DSK that corresponds to
the disk C: (yy = disk = 02) of the CP/M 2.2 OS (x = 0):

In the center window you can see all the files inside the selected virtual disk (disk 0 - 15).

Please note that if you choose an empty disk (like P:) you won't see any file name in the
center window of the CpmtoolsGUI tool.

Z80-MBC2 User Manual 36

https://cdn.hackaday.io/images/9576451536434470918.JPG

For CP/M 3:

select in the bottom left window (Format) of CpmtoolsGUI "z80mbc2-cpm3" for any disk.

In the following image is selected (Image File) the disk DS2N00.DSK that corresponds to
the disk A: (yy = disk = 00) of the CP/M 3 OS (x = 2):

-> STEP 2

To add one or more files to the selected virtual disk you have simply point the upper right
selection window to the folder where the new files are stored in your PC, select them using
the bottom right selection window and press the "<- P" button. After the add you'll see the
added file names in the center window (together with the others file previously present).

-> STEP 3

Exit from the the CpmtoolsGUI tool pressing the eXit button.

Z80-MBC2 User Manual 37

https://cdn.hackaday.io/images/8548631539243636227.jpg

HOW TO USE ILOAD

iLoad is an Intel-Hex format loader that allows to load from the serial port a binary
program using the Intel-Hex format, and execute it. You can run it selecting the option 5
from the boot menu (with IOS-LITE the option is 3):

When using iLoad remember to set a 50/90ms delay on every transmitted line into the
serial port setting of the SW terminal you are using.

In the following image there is the setting window for TeraTerm inside a Windows XP VM:

Z80-MBC2 User Manual 38

https://cdn.hackaday.io/images/8033321695830293944.png

This is required because the standard serial port of the Arduino firmware doesn't use any
handshaking control.

Using the iLoad boot mode it's possible to automate all the process from the source to the
execution in the target.

Please remember that iLoad will take the first address of the Intel-Hex stream as the
starting address of the program, and after the loading will jump to it.
iLoad will also check the hex stream for errors, and protects itself if "someone" try to load a
program (or a part) over itself ("illegal address" error).

Z80-MBC2 User Manual 39

https://cdn.hackaday.io/images/5923691614176323929.JPG

HOW ENABLE THE EXTENDED RX BUFFER FOR XMODEM

(CP/M)

Because the Z80-MBC2 uses a virtual serial port without handshaking there is a timing
problem when dealing with the 128 bytes packets used by the XMODEM protocol.

So the support to the XMODEM protocol has requested changes to extend the serial port
RX buffer to 128 bytes.

Thanks to user Hans who pointed me to the right direction, there is a simple way to modify
the size of the RX buffer used for the serial port.

Search the file boards.txt related with the MightyCore variant in your Arduino IDE.

In a typical Linux Arduino IDE installation it is located in the hidden directory:

/home/<username>/.arduino15/packages/MightyCore/hardware/avr/2.0.5/

or in a Windows 10 installation:

C:\Users\<username>\AppData\Local\Arduino15\packages\MightyCore\hardware\
avr\2.0.5

Open board.txt with an editor and locate the section related to the Atmega32/A:

Z80-MBC2 User Manual 40

https://hackaday.io/hacker/71434-hans
https://cdn.hackaday.io/images/5227871591440706720.png

go some lines down until you see the "32.menu.LTO.Os.compiler.cpp.extra_flags=" line:

then append the string "-DSERIAL_RX_BUFFER_SIZE=128" to that line:

Save the edited board.txt file.

All done!

Z80-MBC2 User Manual 41

https://cdn.hackaday.io/images/7995551591440821329.png
https://cdn.hackaday.io/images/5450181591441248433.png

At this point you can recompile with the LTO option disabled and flash the IOS inside
the Atmega32A with the extended RX buffer enabled.

Please remember that if you update the MightyCore you will lose the changes. In this case
re-apply the previous steps.

Note that IOS checks if this extended buffer is active, and in this case will print a status
line during the boot phase ("IOS: Found extended serial Rx buffer").

CP/M 2.2

To run CP/M 2.2 select it from the boot menu setting the Disk Set 0:

To add, extract or delete files inside a virtual disk (virtual disks filenames on SD are
"DS0Nxx.DSK", where "xx" is the disk number) see the paragraph: HOW ADD CP/M
FILES INSIDE A VIRTUAL DISK USING CPMTOOLSGUI.

NOTE: The creation of a new CP/M 2.2 boot disk (the first disk DS0N00.DSK) requires
further processing (track 0 handling), so is recommended only to add, extract or delete
files inside the boot virtual disk (A:).

Z80-MBC2 User Manual 42

https://cdn.hackaday.io/images/5010531695830385347.png

CP/M 2.2 WARM BOOT MESSAGE

Starting with IOS S220718-R290823 the message shown when CP/M 2.2 makes a warm
boot is no more present.

If you are curious about how CP/M 2.2 handles this event it is possible to re-activate it
easily.

I've added in the drive A: the utility SHOWWARM.BAS to enable the "warm boot"
message.

To execute give the command: MBASIC SHOWWARM:

The message will be active until the next reboot.

CP/M 2.2 AUTOEXEC

To enable the AUTOEXEC execution after the cold boot change the corresponding state to
ON from the usual IOS boot selection menu.

To edit AUTOEXEC.SUB from drive A, you can use the ED editor. You can test the
execution giving the command SUBMIT AUTOEXEC from drive A (you can omit the

Z80-MBC2 User Manual 43

https://cdn.hackaday.io/images/6423881695569962392.png

extension .SUB inside the SUBMIT command).

QP/M 2.71

To run QP/M 2.71 select it from the boot menu setting the Disk Set 1:

QP/M is an interesting alternative to CP/M developed by MICROCode Consulting that
supports also file timestamping, and it is 100% CP/M 2.2 "compatible". MICROCode
Consulting has released the original installation files and all the documentation in their
site with the "restricted usage" condition, that means free for non-commercial use and
for personal use only.

To enable timestamping (see upper screenshot) you need to install the optional RTC
module.

I suggest to read the QP/M documentation for the various commands (see the Downloads

Z80-MBC2 User Manual 44

http://www.microcodeconsulting.com/z80/qpm.htm
http://www.microcodeconsulting.com/z80/qpm.htm
https://cdn.hackaday.io/images/9082861695807292021.png

section in their site).

QP/M 2.71 AUTOEXEC

The QP/M uses for the batch file the .QSB extension. So the AUTOEXEC file is here
named AUTOEXEC.QSB. To enable the AUTOEXEC execution after the cold boot
change the corresponding state to ON from the usual IOS boot selection menu. In the
drive A: there is an example of AUTOEXEC.QSB file ready to run.

CP/M 3

To run CP/M 3 select it from the boot menu setting the Disk Set 2:

With CP/M 3.0 it is possible use the 128KB banked RAM to have a wider user area (TPA)
for programs and a more "evoluted" OS.

Just as example of how it is easy with CP/M 3.0 manage multiple configurations, I've done

Z80-MBC2 User Manual 45

http://www.microcodeconsulting.com/z80/qpm.htm
https://cdn.hackaday.io/images/6396751695830506677.png

also a "non-banked" 64KB version. The switch from one version to the other can be done
simply running a batch from the console itself.

I've prepared two simple batch files to do that. From drive A: the command:

submit sys64

will set the 64KB "non-banked" version and then reboot the system.

To activate again the 128KB "banked" version give the command (from drive A:):

submit sys128

CP/M 3 AUTOEXEC

The AUTOEXEC switch for CP/M 3.0 works in a different way from the CP/M 2.2 and
QP/M 2.71 implementations.

Now there is a custom utility (AUTOEXEC) that checks the IOS flag and sets the exit code
accordingly (using the BDOS function 108). This allow to use the CP/M 3.0 batch
conditional execution (see the CP/M 3 Programmer Guide par. 1.6.3) to run any wanted
command or program based on the status of the IOS AUTOEXEC flag.

I've prepared an example using an other CP/M 3.0 feature, the "PROFILE.SUB" batch that
is automatically executed at cold boot (if it exists). To activate it (in the drive A:) rename
the file PROFILE.SU as PROFILE.SUB with the command:

ren profile.sub=profile.su

Now you can see how it works setting the AUTOEXEC flag on or off with the IOS "Select
boot mode or system parameters" menu.

UCSD PASCAL

Thanks to Michel Bernard (a member of the Z80-MBC2 User Group on FB) who did the
porting, now UCSD Pascal is running on the Z80-MBC2!

To run UCSD Pascal select it from the boot menu setting the Disk Set 3:

Z80-MBC2 User Manual 46

Z80-MBC2 User Manual 47

https://cdn.hackaday.io/images/4589781567353246177.png
https://cdn.hackaday.io/images/3377821567352748272.png

In the SD image there are two volumes (disks) SYS1: and SYS2:

Z80-MBC2 User Manual 48

https://cdn.hackaday.io/images/2460651567352938158.png
https://cdn.hackaday.io/images/7542851567353455325.png

Here the execution of an example (SINE.CODE) already compiled on the SYS2: disk:

In the folder "UCSD Pascal" inside the SD there are the original files and sources
providedby Michel Bernard (https://github.com/GmEsoft/Z80-MBC2_UCSDP).

A lot of documentation and books about UCSD Pascal can be found here.

Z80-MBC2 User Manual 49

https://github.com/GmEsoft/Z80-MBC2_UCSDP
https://cdn.hackaday.io/images/2764561567353519137.png

COLLAPSE OS

To run Collapse OS select it from the boot menu setting the Disk Set 4:

For more info the Collapse OS site is here .

Z80-MBC2 User Manual 50

http://collapseos.org/
https://cdn.hackaday.io/images/2678651593082307012.png

FUZIX OS

To run Fuzix OS select it from the boot menu setting the Disk Set 5:

Z80-MBC2 User Manual 51

https://cdn.hackaday.io/images/206901695557550390.png

You have to select hda2 as bootdev device when asked, and then log as root user (no
password):

Z80-MBC2 User Manual 52

https://cdn.hackaday.io/images/4251761695557705457.png

Remember to give the shutdown command before powering off to avoid the file system
warning and checking at the next Fuzix reboot:

For more info the Fuzix OS site is here .

Z80-MBC2 User Manual 53

https://www.fuzix.org/
https://cdn.hackaday.io/images/9213031695557891916.png
https://cdn.hackaday.io/images/8203201695558224456.png

HOW BUILD FUZIX OS FROM SCRATCH

Building Fuzix OS (https://github.com/EtchedPixels/FUZIX) for a Z80 CPU with banked
RAM requires a special patched version of SDCC available from here:
https://github.com/EtchedPixels/sdcc280.

This special SDCC version is source only, and it needs to be compiled.

These instructions have been written using an Ubuntu based Linux distro (Linux Mint
20.3). Aside from the package installation commands, the rest of the steps should work
with many other Linux distributions as well.

STEP 1:

First, install the necessary packages, if they are not already there (they should...):

sudo apt-get install gcc

sudo apt-get install build-essential

sudo apt-get install automake gputils flex texinfo bison byacc

STEP 2:

Install the following package that is not usually present on a Ubuntu based distro:

sudo apt-get install libboost-all-dev

STEP 3:

Now get the special version of the SDCC compiler for Fuzix:

git clone https://github.com/EtchedPixels/sdcc280.git

and give the following commands to compile and install it:

cd sdcc280

cd sdcc

./configure

make

sudo make install

cd ../..

STEP 4:

Get Fuzix source code:

git clone https://github.com/EtchedPixels/FUZIX.git

cd FUZIX

Z80-MBC2 User Manual 54

https://github.com/EtchedPixels/sdcc280
https://github.com/EtchedPixels/FUZIX

STEP 5:

Modify the Makefile and change the line that says TARGET=..... to be TARGET=z80-mbc2
and compile it (it can take hours...):

sudo make

STEP 6:

Now create the fuzix.bin file and the virtual disk file (.DSK) with the command (from the
same directory):

sudo make diskimage

All done! In the folder FUZIX/Images/z80-mbc2 you'll get:

fuzix.bin
DS0N01.DSK

Rename DS0N01.DSK as DS5N01.DSK and copy both files into the SD of the Z80-MBC2
SBC.

NOTE: This guide was adapted from here: http://www.forofpga.es/viewtopic.php?t=422

Z80-MBC2 User Manual 55

http://www.forofpga.es/viewtopic.php?t=422

* * USING THE SDCC CROSS COMPILER * *

Using the SDCC (Small Device C Compiler) cross-compiler it is possible setup a toolchain
to program the Z80-MBC2 with the C language, doing all the development on a PC and
uploading the code with the serial port and then executing it on the target Z80-MBC2 with
iLoad.

SDCC can be found here: https://sdcc.sourceforge.net/.

After installing it, SDCC needs to be in some way instructed about how to deal with the
specific HW of the Z80-MBC2.

For this reason in the SD image, inside the \SDCC folder, there are two support files:
S190818-R011023_crt0.s and S290923_Z80-MBC2.c.

All the steps needed to configure the toolchain are explained below (we will assume a
Windows operating system here, but the steps are similar for Linux):

STEP 1:

Copy the two support files S190818-R011023_crt0.s and S290923_Z80-MBC2.c from the
SD image (\SDCC folder) to your working directory (it is the folder where your C source
files are stored) and compile the first file with the command (from your working directory):

sdasz80 -plosgff -o S190818-R011023_crt0.s

It will be created the S190818-R011023_crt0.rel file.

STEP 2:

Now it's time to compile the second support file (S290923_Z80-MBC2.c). Here things are
a little more complex because this file can be compiled in two different ways which differ
depending on whether interrupts are enabled or not.

The need to have interrupts enabled or not depends on whether your user program uses
them or not.

To enable the interrupts support compile with the command (from your working directory):

sdcc -c -mz80 -DZ80MBC2IRQ S290923_Z80-MBC2.c

Instead to disable the interrupts support compile with (from your working directory):

sdcc -c -mz80 S290923_Z80-MBC2.c

It will be created the S290923_Z80-MBC2.rel file.

Z80-MBC2 User Manual 56

STEP 3:

iLoad uses the first address as starting address for the execution, so the executable file
(Intel-Hex formatted) must be in ascending address order. This is not guaranteed by
SDCC, so you need to use the srec_cat utility to sort the file. You can download this utility
from here: https://srecord.sourceforge.net/ and then you have to copy the
srec_cat.exe file into your working directory.

All done!

To compile your source file the command is (from your working directory):

sdcc -mz80 --no-std-crt0 S190818-R011023_crt0.rel <your_source.c> S290923_Z80-

MBC2.rel -o temp.hex

It will be created the temp.hex file (Intel-hex formatted executable file).

Now to sort the file give the command (from your working directory):

srec_cat -disable-sequence-warnings temp.hex -Intel -o out.hex -Intel

This will create the sorted file ready to be loaded with iLoad: out.hex.

Now you can upload and execute out.hex using the iLoad boot mode of the Z80-MBC2.

SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (WINDOWS)

To create an automated toolchain you need another "ingredient", a terminal emulator
supporting scripts. Here we will use Tera Term. You can download Tera Term from here:
https://ttssh2.osdn.jp/index.html.en.

After installing Tera Term, from the SD image inside the \SDCC folder, copy into the
working directory the following batch files: SDC.BAT and L.BAT.

Before using the L.BAT batch file you have to adapt two parameters according with the
configuration of your PC.

Go at line 18 and verify the path where Tera Term (ttermpro.exe) is installed, and at line
19 the number of the COM port used to connect the Z80-MBC2 to your PC.

You need also to copy the Tera Term script LoadZ80.ttl from the /SDCC folder (inside the
SD image) to the directory where Tera Term (ttermpro.exe) is installed, and adapt the
parameter at line 15 with the complete path of your working directory in your system.

Now to compile your_source.c file give the command (from your working directory):

SDC your_source.c

Z80-MBC2 User Manual 57

https://ttssh2.osdn.jp/index.html.en

and to upload and execute it on the Z80-MBC2 (from your working directory):

L

Remember to close the Tera Term window before executing the L.BAT command again.

SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (LINUX)

On Linux the procedure from STEP 1 to STEP 3 is nearly the same. It is possible to install
easily the srec_cat utility.

About the terminal emulator, on Linux you can use minicom.

The needed script file must be created. So create a text file named minicom.mac with the
following text:

#

Minicom script for the automated SDCC toolchain for the Z80-MBC2

#

sleep 3

! ascii-xfr -s -n -l 100 load.hex

sleep 1

The command to upload the executable load.hex file (Intel-Hex formatted) into the target
Z80-MBC2 and execute it using minicom is:

minicom -w -S minicom.mac -D /dev/ttyUSB0

where /dev/ttyUSB0 must be adapted to the port you are using to connect the Z80-MBC2
on your system.

Remember to close minicom before the next upload with the Alt-A key followed by X.

SDCC: USING AUTOBOOT

If you want make your custom .hex executable "permanent", you can use the Autoboot
mode of the Z80-MBC2.

First you need another utility, hex2bin.exe, in your working directory. You can find hex2bin
here.

Then with the command:

hex2bin -p 00 out.hex

Z80-MBC2 User Manual 58

https://sourceforge.net/projects/hex2bin/files/hex2bin/Hex2bin-2.5.tar.bz2/download

your out.hex executable file (Intel-Hex formatted) will be converted in a flat binary file
out.bin.

At this point rename out.bin as autoboot.bin and copy it into the root of the SD used by
the Z80-MBC2.

Now selecting the Autoboot mode from the Z80-MBC2 boot menu will automatically run it
when you turn on the board (or after a reset).

SDCC: EXAMPLES

In the SD image (\SDCC\examples folder) there are a few sources examples to test the
toolchain.

Remember that you need to re-compile the S290923_Z80-MBC2.c file as explained in the
STEP 2 every time you switch from a program requiring interrupts enabled to another one
wanting them disabled and vice versa.

I suggest to take a look at the content of the Blink_MBC2.c and Blink_MBC2_IRQ.c
examples, and at the source of both the support files (S190818-R011023_crt0.s and
S290923_Z80-MBC2.c) to understand how they works.

Dealing with the IOS Opcodes requires that you read the various comments on the IOS
source file (.ino) explaining how they works.

Using IOS Opcodes when interrupts are enabled requires that you treat them as an atomic
operation, disabling interrupts before the Opcode call and re-enabling them immediately
afterwards (see the content of the previous source files as an example).

Z80-MBC2 User Manual 59

* * USING THE TASM CROSS ASSEMBLER * *

The TASM cross assembler (Windows CLI application) can be used for various CPU. It
can be downloaded from here. The on-line manual is here.

Using the TASM cross assembler it is possible setup a toolchain to program the
Z80-MBC2, doing all the development on a PC and uploading the code with the serial port
and then executing it on the target Z80-MBC2 with iLoad.

After the download of the TASM zip file, unzip it into your working directory (it is the folder
where your assembler source files are stored) and to assemble an user source give the
command:

tasm -s -h -c -g0 -80 <Your_source.asm> out.hex

It will be created the out.hex file (Intel-hex formatted executable file).

Now you can upload and execute out.hex using the iLoad boot mode of the Z80-MBC2.

Remember that iLoad will take the first address of the Intel-Hex stream as the starting
address of the program, and after the loading will jump to it.

At this point you can follow the same steps to create an automated toolchain described in
the paragraph "SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (WINDOWS)".

TASM: USING AUTOBOOT

If you want create a binary file to use with the Autoboot boot mode you can generate it with
the command:

tasm -s -h -c -g3 -80 <Your_source.asm> out.bin

It will be created a flat binary file out.bin. Then rename out.bin as autoboot.bin and copy it
into the root of the SD used by the Z80-MBC2.

Z80-MBC2 User Manual 60

http://www.cpcalive.com/docs/TASMMAN.HTM
http://www.ticalc.org/archives/files/fileinfo/250/25051.html

* * OVERCLOCKING THE Z80-MBC2 * *

Since the Mighty Core gives the chance to choice a 20MHz bootloader, I've decided to try
to "overclock" the Atmega32A using a 20MHz quartz:

You don't need others HW changes, just use a 20MHz quartz instead of a 16MHz one.
The Z80 clock speed will be at 10MHz.

You have to select the "20MHz external" option in the "Toos" menu of Arduino IDE before
flashing the 20MHz bootloader:

Z80-MBC2 User Manual 61

https://github.com/MCUdude/MightyCore#how-to-install
https://cdn.hackaday.io/images/1880161541152622757.jpg

Z80-MBC2 User Manual 62

https://cdn.hackaday.io/images/6057411541156332627.jpg
https://cdn.hackaday.io/images/8197021541155101465.jpg

Of course you need to load the sketch again (using the "20MHz external" option). IOS will
display the new clock speed:

Remember that using a 20MHz quartz you are out of the Atmega32a specifications (the
Atmega32a is rated at 16MHz max.), so you are in a "grey area" where things "may
works"…

Z80-MBC2 User Manual 63

https://cdn.hackaday.io/images/6507201695835168878.png

* * USING AN ATMEGA1284/ATMEGA1284P * *

Starting with IOS S220718-R290823 it is possible to use an Atmega1284/Atmega1284P
as MCU. This will let more space for any customization.

Of course you have to re-compile the IOS source selecting the right MCU.

Remember to apply the changes described in the paragraph "HOW ENABLE THE
EXTENDED RX BUFFER FOR XMODEM (CP/M)" searching for the Atmega1284 section:

Z80-MBC2 User Manual 64

https://cdn.hackaday.io/images/6467181696756943112.png

* * PROJECT STATUS * *

Currently both IOS-LITE and IOS are available. The first is a simplified version that doesn't
support the SD, the second is a full featured version that requires the SD module (e. g. to
run CP/M).

The current revision of IOS allows you to run CP/M 2.2, CP/M 3.0, QP/M 2.71, UCSD
Pascal, Collapse OS and Fuzix OS (and the stand-alone versions of Basic and Forth, the
same supported by IOS-LITE) with 16 virtual disks (8Mbytes each) for each OS.

Support files for the SDCC cross-compiler have been added inside the SD image
(/SDCC folder), including interrupt handling.

The add-on board uTerm has been released.

The add-on board uCom has been released.

The SPP Adapter board (parallel printer standard interface) is supported under CP/M 2.2
and CP/M 3 (banked).

Not suited for aerospace applications! ☻

* * HOW TO GET A PCB * *

Because some people asked about this, I've prepared an "easy" link to get a small lot (5
pcs minimum) of PCB. The link is this one.

* * HOW TO GET A KIT OR AN ASSEMBLED UNIT * *

If you are looking for a kit with all the needed parts or an assembled unit ready to use now
there is a professional seller that can sell both and ship worldwide.

The link to the seller is this one .

* * Z80-MBC2 USER GROUP * *

An "User Group" was created on Facebook:

https://www.facebook.com/groups/Z80MBC2.

Z80-MBC2 User Manual 65

https://www.facebook.com/groups/Z80MBC2
https://shop.mcjohn.it/en/home/90-z80-mbc2-black-edition.html
https://www.pcbway.com/project/shareproject/Z80_MBC2__4ICs_homemade_Z80_computer.html
https://hackaday.io/project/177988-68k-mbc-a-3-ics-68008-homebrew-computer/log/198836-spp-standard-parallel-port-adapter-board
https://hackaday.io/project/165709-ucom
https://hackaday.io/project/159973-z80-mbc2-4ics-homemade-z80-computer/log/163395-uterm-is-out

* * LICENSING AND CREDITS * *

All the project files (SW & HW) are licensed under GPL v3.

If you use this material in any way a reference to the author (me ☻) will be appreciated.

CP/M seems to be Open Source now (see here).

PetitFS was developed by ChaN.

Basic stand-alone interpreter was an adaptation from Grant Searle work.

Forth stand-alone interpreter was originally ported to the Z80-MBC by Bill Westfield.

UCSD Pascal was ported by Michel Bernard.

Collapse OS was designed and ported by Virgil Dupras.

Fuzix OS was designed and ported by Alan Cox (www.fuzix.org).

Z80-MBC2 User Manual 66

http://www.fuzix.org/
https://hackaday.io/project/19000
http://elm-chan.org/fsw/ff/00index_p.html

	* * INTRODUCTION * *
	* * NOTES ON THIS MANUAL * *
	* * HARDWARE OVERVIEW * *
	NOTES ABOUT THE COMPONENTS
	THE GPE OPTION (GPIO CONNECTOR)
	THE SERIAL PORT
	THE OPTIONAL RTC MODULE
	THE OPTIONAL SD MODULE

	* * uTERM, VT100-LIKE TERMINAL FOR THE Z80‑MBC2 * *
	* * uCOM, RS232 FOR THE Z80-MBC2 * *
	* * SPP (STANDARD PARALLEL PORT) ADAPTER BOARD * *
	SPP: HOW TO BUILD IT
	SPP: HOW TO USE THE SPP CP/M UTILITY
	SPP: WHERE TO GET A PCB
	SPP: HOW TO GET A KIT OR AN ASSEMBLED UNIT

	* * SOFTWARE OVERVIEW * *
	HOW FLASH THE BOOTLOADER FROM ARDUINO IDE (LINUX)
	HOW ENTER IN THE "SELECT BOOT MODE OR SYSTEM PARAMETERS" MENU
	THE BAUD RECOVERY VIRTUAL BUTTON
	THE SD IMAGE
	HOW ADD CP/M FILES INSIDE A VIRTUAL DISK USING CPMTOOLSGUI
	HOW TO USE ILOAD
	HOW ENABLE THE EXTENDED RX BUFFER FOR XMODEM (CP/M)
	CP/M 2.2
	CP/M 2.2 WARM BOOT MESSAGE
	CP/M 2.2 AUTOEXEC
	QP/M 2.71
	QP/M 2.71 AUTOEXEC
	CP/M 3
	CP/M 3 AUTOEXEC
	UCSD PASCAL
	COLLAPSE OS
	FUZIX OS
	HOW BUILD FUZIX OS FROM SCRATCH

	* * USING THE SDCC CROSS COMPILER * *
	SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (WINDOWS)
	SDCC: SETTING UP AN AUTOMATED TOOLCHAIN (LINUX)
	SDCC: USING AUTOBOOT
	SDCC: EXAMPLES

	* * USING THE TASM CROSS ASSEMBLER * *
	TASM: USING AUTOBOOT

	* * OVERCLOCKING THE Z80-MBC2 * *
	* * USING AN ATMEGA1284/ATMEGA1284P * *
	* * PROJECT STATUS * *
	* * HOW TO GET A PCB * *
	* * HOW TO GET A KIT OR AN ASSEMBLED UNIT * *
	* * Z80-MBC2 USER GROUP * *
	* * LICENSING AND CREDITS * *

